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The conductivity of graphite is analytically evaluated in the range of 0.1–1.5 eV, where the electron relax-
ation processes can be neglected and the low-energy excitations at the “Dirac” points are most essential. The
value of conductivity calculated per one graphite layer is close to the universal conductivity of graphene. The
features of the conductivity are explained in terms of singularities of the electron dispersion in graphite.
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Since the pioneering experimental investigations of a
single atomic layer of graphite �graphene�,1,2 its properties
attract much attention. Among them, the optical response is
of particular interest. Recently the transmittance of light
throw the graphene monolayer has been measured.3–5 The
transmittance

T = 1 − ��

was found to be frequency independent in a broad range of
photon energy. The result of the experiments is remarkable
because it involves the fine structure constant �. It was dis-
covered that the real part of the optical conductance of
graphene takes the universal value,

G =
e2

4�
,

which does not depend on any parameters of graphene. This
value agrees perfectly with the calculations6,7 ignoring the
Coulomb interactions between electrons. The agreement
shows that the poorly screened Coulomb interaction does not
play any role in graphene for infrared photon frequencies.8,9

The intermediate place between two-dimensional
graphene and three-dimensional semiconductors belongs to
multilayer graphenes10 and graphite, which have a layered
structure with the interlayer distance c0=3.35 Å much larger
than the nearest-neighbor distance a0=1.42 Å in the layer.
In the study of graphite,11 it was found that its optical con-
ductivity per one layer is very closed to the universal con-
ductivity of graphene and has evident peculiarities. The ana-
lytic calculation of the in-plane optical response of graphite
done previously12 has ignored coupling between layers and
no peculiarities have appeared for the infrared region.

In the present Brief Report, we evaluate analytically the
conductance of graphite in the infrared region of the photon
frequencies. It is known that the low-energy electron excita-
tions in graphite can be described very well with the
Slonczewski-Weiss-McClure theory.13 The largest parameter
of the theory, �0=3.1 eV,14 describes the electron dispersion
for in-layer directions k. If the photon energy is less than �0,
we can use the linear expansion of the in-layer hopping term
in the Hamiltonian and introduce the constant velocity pa-
rameter v=108 cm /s. The next in size is the interlayer hop-
ping �1 on the order of 0.4 eV which is known from experi-
ments on bilayer graphene.15,16 The parameters �3 and �4
give the corrections of the order of 10% to the in-layer

velocity v. The electron-hole overlap on the order of 0.02 eV
is determined by parameters �2 and �5 �see Fig. 1�. There-
fore, for the photon frequencies larger than 0.1 eV, we can
neglect the terms with �2 and �5. Calculating such the inte-
gral property as conductivity in the region of the infrared
frequencies between 0.1 and 1.5 eV, we can, first, neglect the
small parameters of the theory and, second, use the linear k
expansion of the in-layer hopping term. Our results have the
evident analytic form.

In this approximation, the effective Hamiltonian writes
near the K-G-H lines of the Brillouin zone in the simple form

H�k� =�
0 k+ ��z� 0

k− 0 0 0

��z� 0 0 k−

0 0 k+ 0
� �1�

determined only by two constants. One is v=108 cm /s in-
cluded in the definition of the in-plane momentum compo-
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FIG. 1. The dispersion of the low-energy electron bands in
graphite.
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nents, k�=v��ikx−ky�, and another is the interlayer inter-
action �1 involved in the function ��z�=2�1 cos z. The mo-
mentum component z=kzc0 is limited by the Brillouin half
zone, 0�z�� /2 in relative units.

The corresponding eigenenergies are

	1,2 =
��z�

2
��1

4
�2�z� + k2,

	3,4 = −
��z�

2
��1

4
�2�z� + k2.

On the K-G-H lines, k=0, these equations determine two
bands 	1,4= ���z� and two degenerate �electron and hole�
bands with the energy 	2,3=0. We have to emphasize that
this degeneracy results from C3v symmetry on the K-G-H
line.

In order to calculate the conductivity, we use the general
expression


ij��� =
2ie2

�2��3� d3k �
n�m

�−
df

d	n

vn
i vn

j

� + i

+ 2�
vnm

i vmn
j 	f
	n�k�� − f
	m�k���


	m�k� − 	n�k��	�� + i�2 − 
	n�k� − 	m�k��2� ,

�2�

valid in the collisionless limit ��, where  is the collision
rate of the carriers, f�	�= 
exp� 	−�

T �−1�−1 is the Fermi-Dirac
distribution function, and the integral is over the Brillouin
zone.

Here, the first term is the Drude-Boltzmann conductivity
negligible for frequencies larger than the electron-hole over-
lap. The second term represents the optical interband transi-
tions of electrons from the valence 2, 4 to conductive 1, 3
bands. The real part of the interband contributions into con-
ductivity arises from the bypass around the pole at 	n�k�
−	m�k�= ��. The imaginary part is given by the principal
value of the integral.

The velocity operator

v =
�H�k�

�k

near the K-G-H lines is determined by Hamiltonian �1�. The
corresponding matrix elements should be calculated in the
representation, where the Hamiltonian has a diagonal form.
The operator transforming the Hamiltonian to this form can
be written as follows:

U =�
	1/N1 	2/N2 − 	3/N3 − 	4/N4

k−/N1 k−/N2 − k−/N3 − k−/N4

	1/N1 	2/N2 	3/N3 	4/N4

k+/N1 k+/N2 k+/N3 k+/N4

� ,

where Nn
2=2�	n

2+k2�. In this representation, the velocity
operator

U−1vU

has the matrix elements

vnn = �	n/�k ,

v23 = 2i�	3 − 	2�
�− kxey + kyex��/N2N3,

v12 = 2�	1 + 	2�
�kxex + kyey��/N1N2,

v14 = 2i�	4 − 	1�
�− kxey + kyex��/N1N4,

where ei are the unit vectors directed along the coordinate
axes. For the real part of conductivity, the integration in Eq.
�2� is easily taken at zero temperatures T=0 in cylindrical
coordinates �kz ,k ,�� over the angle � and over k with the
help of the � function, ��−x+ i�−1→−i����−x�. One ob-
tains for contributions of the transitions between the corre-
sponding valence and conduction bands into the diagonal
components of conductivity �off-diagonal ones equal zero�
the following integrals over z=kz /c0:

Re 
23 =
e2

4��c0
�

0

�/2

dz
2��z� + �

��z� + �
,

Re 
21 =
e2

4��c0
�

0

�/2

dz
�2�z�

�2 �
� − ��z�� ,

Re 
41 =
e2

4��c0
�

0

�/2

dz
2��z� − �

��z� − �
�
� − 2��z�� ,


43 = 
21, �3�

where ��z�=2�1 cos z and ��x� is the step function.
It is evident from Eq. �3� �see also Fig. 2� that the con-

ductivity 
23 tends to e2 /4�c0 at the low frequencies �
�2�1, whereas other contributions go to zero in the limit of
low frequencies. At larger frequencies ��2�1, the total con-
ductivity �the sum of 
23 and 
41� tends again to e2 /4�c0.
Therefore, 
0=e2 /4�c0 can be considered as the universal
conductivity of graphite, where e2 /4� is the conductivity of
monolayer graphene and the factor 1 /c0 is the number of the
layers per the length unit in the z direction of graphite.

Frequency (units of 2 )

C
on

du
ct

iv
ity

(u
ni

ts
of

)

0 0.5 1 1.50

0.5

1

1.5

γ1

e2 /2
h

π Experiment

Theory

0 0.5 1 1.5
0

0.5

1

23

41
21+43

FIG. 2. �Color online� The real part of the graphite conductivity
per layer �in units of e2 /4�� versus the frequency �in units of 2�1

=0.84 eV�; the experimental data �Ref. 11� are shown in the solid
line, results of the present theory in the dashed line. The insert
shows the contributions of various electron transitions.
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Integrating in Eq. �3� we get finally

Re

23


0
= 1 −

2t

��t2 − 1
arctan� t − 1

t + 1
, t � 1,

Re

23


0
= 1 −

t

��1 − t2
ln

�1 + t + �1 − t
�1 + t − �1 − t

, t � 1, �4�

Re

21


0
=

1

4t2�1, t � 1,

1 −
2

�
�arccos t + t�1 − t2� , t � 1,�

Re

41


0
= 1 −

2t

��t2 − 1
arctan� t + 1

t − 1
, t � 2,

Re

41


0
= 1 −

2z1

�
−

2t

��t2 − 1
�arctan� t + 1

t − 1

− arctan�� t + 1

t − 1
tan

z1

2
��, 1 � t � 2,

Re

41


0
= 1 −

2z1

�
+

t

��1 − t2�ln
�1 + t + �1 − t
�1 + t − �1 − t

+ ln

�1 + t tan
z1

2
− �1 − t

�1 + t tan
z1

2
+ �1 − t�, t � 1, �5�

where t=� /2�1 and z1=arccos�t /2�.
The peculiarity as a kink can be seen in Fig. 1. Expression

�5� shows that this kink is located at �=2�1. Taking into
account the kink position �=0.84 eV determined experi-
mentally, the value of �1=0.42 eV is found in excellent
agreement with experiments on bilayer graphene.

The contributions of the electron interband transitions in
the imaginary part of conductivity can be integrated over k at
the zero temperature. The results are obtained in the form of
integrals over kz,

Im

23


0
=

2

�2�
0

�/2

dz
���z�

�2�z� − �2 ln
��z�/�� ,

Im

21


0
=

1

�2�
0

�/2

dz
��z�

�
�2 +

��z�
�

ln
���z� − ��
��z� + �

� ,

Im

41


0
=

1

�2�
0

�/2

dz�2��z� − �

��z� − �
ln�2 − �/��z��

−
2��z� + �

��z� + �
ln
2 + �/��z��

and shown in Fig. 3. Here, the peculiarity looks like a thresh-
old at �=2�1 and it is more clearly marked in comparison
with the kink in the real conductivity. Both peculiarities re-
sult from the electron transitions between the bands 2→1
and 4→3. We should emphasize that the peculiarities be-
come broader with the temperatures and the collision pro-
cesses included.

So far the in-layer conductivity was considered. The esti-
mate of the interlayer conductivity can be also done. Since
the conductivity is determined by the ratio of the correspond-
ing velocities squared, we have to write

vz =
�	3

�kz
� �1c0 sin�kzc0� .

Then, integrating over kz, we get


z/
0 � ��1c0/�v�2/2 � 0.05.

In conclusion, our calculations reveal that the optical con-
ductance of graphite can be estimated for frequencies be-
tween 0.1 and 1.5 eV multiplying the graphene conductivity
e2 /4� by the number of the layers 1 /c0 per the length unit.
The Drude-Boltzmann contribution is essential at lower fre-
quencies, whereas others interband transitions, e.g., at the M
point of the Brillouin zone contribute into the conductivity at
higher frequencies. Similar estimates are applicable for other
graphite materials such as nanoribbons. The kink in the real
part of conductivity and the threshold in the imaginary part
appear at the frequency �=2�1 determined by the interlayer
coupling. The sharpness of the features are smeared with the
relaxation processes and temperatures included.
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FIG. 3. �Color online� The imaginary part of the graphite con-
ductivity per layer �in units of e2 /4�� versus the frequency �in units
of 2�1=0.84 eV�.
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